On Asymptotics in Case of Linear Index-2 Differential-algebraic Equations

نویسنده

  • MICHAEL HANKE
چکیده

Abstract. Asymptotic properties of solutions of general linear differential-algebraic equations (DAE’s) and those of their numerical counterparts are discussed. New results on the asymptotic stability in the sense of Lyapunov as well as on contractive index-2 DAE’s are given. The behaviour of BDF, IRK, and PIRK applied to such systems is investigated. In particular, we clarify the significance of certain subspaces closely related to the geometry of the DAE. Asymptotic properties like A-stability and L-stability are shown to be preserved if these subspaces are constant. Moreover, algebraically stable IRK(DAE) are B-stable under this condition. The general results are specialized to the case of index-2 Hessenberg systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients

In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...

متن کامل

The Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint

In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...

متن کامل

Asymptotic Expansions for Regularization Methods of Linear Fully Implicit Differential-Algebraic Equations

Abstract. Differential-algebraic equations with a higher index can be approximated by regularization algorithms. One of such possibilities was introduced by März for linear time varying index 2 systems. In the present paper her approach is generalized to linear time varying index 3 systems. The structure of the regularized solutions and their convergence properties are characterized in terms of...

متن کامل

A Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations

In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...

متن کامل

Numerical solution of higher index DAEs using their IAE's structure: Trajectory-prescribed path control problem and simple pendulum

In this paper, we solve higher index differential algebraic equations (DAEs) by transforming them into integral algebraic equations (IAEs). We apply collocation methods on continuous piece-wise polynomials space to solve the obtained higher index IAEs. The efficiency of the given method is improved by using a recursive formula for computing the integral part. Finally, we apply the obtained algo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998